• 2017
• 2016
• 2015
• 2014
• 2013
• 2012
• 2011
• 2010
• 2009
• 2008
• 2007
• 2006
• 2005
• 2004
• 2003
• 2002
• 2001
• 2000
• 1999
• 1998
• 1997
• 1996
• 1995
• 1994
• 1993
• 1992
• 1991
• 1990
• 1989

Publication Summary and Abstract

Humphries, M. D. & Prescott, T. J. (2006), Distributed action selection by a brainstem neural substrate: An embodied evaluation, From Animals to Animats 9: Proceedings of the Ninth International Conference on Simulation of Adaptive Behaviour, pp. 199-210, Springer-Verlag: Berlin.

Theoretical approaches to the problem of action selection in autonomous agents often contrast centralised and distributed selection schemes. Here we describe a neural substrate for distributed action selection in the vertebrate brain-stem, the medial reticular formation (mRF), which may form a evolutionary precursor to centralised schemes found in the higher brain. We evaluate its competence as a selection device for robot control in a simulated resource co-ordination task, and use a genetic algorithm to evolve the mRF's inputs and internal structure. Some configurations of the mRF could sufficiently co-ordinate actions to maximise the robot's energy, but this is critically dependent on a high rate of energy acquisition, which leaves an animal (or agent) susceptible to food shortages. Thus, the inflexibility of the mRF as a distributed selection mechanism may have provided impetus for the evolution of more complex, centralised, selection mechanisms in the brain.
Article via Digital Object Identifer (DOI) - article retrieved is probably subject to publisher's copyright

Copy of the article (PDF)