• 2017
• 2016
• 2015
• 2014
• 2013
• 2012
• 2011
• 2010
• 2009
• 2008
• 2007
• 2006
• 2005
• 2004
• 2003
• 2002
• 2001
• 2000
• 1999
• 1998
• 1997
• 1996
• 1995
• 1994
• 1993
• 1992
• 1991
• 1990
• 1989

Publication Summary and Abstract

Prescott, T.J., Redgrave, P., & Gurney, K. (1999), Layered control architectures in robots and vertebrates, Adaptive Behavior, 7:99-127.

We review recent research in robotics, neuroscience, evolutionary neurobiology, and ethology with the aim of highlighting some points of agreement and convergence. Specifically, we compare Brooks' (1986) subsumption architecture for robot control with research in neuroscience demonstrating layered control systems in vertebrate brains, and with research in ethology that emphasizes the decomposition of control into multiple, intertwined 'behavior systems'. From this perspective we then describe interesting parallels between the subsumption architecture and the natural layered behavior system that determines defense reactions in the rat. We then consider the action selection problem for robots and vertebrates and argue that, in addition to subsumption-like conflict resolution mechanisms, the vertebrate nervous system employs specialized selection mechanisms located in a group of central brain structures termed the basal ganglia. We suggest that similar specialized switching mechanisms might be employed in layered robot control architectures to provide effective and flexible action selection.
Publisher's website - you should find the article here (probably subject to publisher's copyright)

Copy of the article (PDF)
Copy of the article (Postscript)